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Abstract

The vibration of sheet metal during zinc coating processes can lead to non-uniform coating thickness and
overall poor product quality. This vibration develops from two principal mechanisms, namely, the run-out
associated with the supporting rollers and/or bearings, and the time-varying tension associated with the
manufacturing process. This study focuses on the second of these mechanisms (time-varying tension) that
becomes significant under conditions leading to parametric resonance. The parametric resonance of the
sheet metal is captured in a proposed model of a plate subject to time-varying and non-uniform edge
tension. The model accounts for these effects as well as the non-linear stretching of the plate mid-plane as a
result of transverse plate vibration. The linear vibration characteristics of the plate are studied first and are
then used in deriving a single mode approximation of the non-linear, parametrically excited plate model. A
perturbation solution of this model reveals the major parameters that influence parametric resonance in this
application. Theoretical results for plate vibration are compared to experimental measurements of sheet
metal vibration in a production facility. This comparison demonstrates that the model accurately captures
the physical mechanisms responsible for sheet metal vibration and therefore, the physical parameters (such
as damping) have the greatest impact on this vibration.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

The manufacturing of paper, film, plastic and sheet metal requires the handling of very thin and
wide materials that are transported by rollers. The vibration of these materials or ‘‘plates’’ can
adversely affect the quality of the finished product. For example, the zinc coating of steel sheet
metal requires drawing the sheet through a bath of melted zinc and then drying the sheet in air
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between two rollers as the zinc solidifies. In this process, the vibration of the sheet metal may lead
to uneven zinc coating and poor product quality. The plate vibration derives from two principal
mechanisms. The first mechanism is an external excitation that results from the eccentric rotation
of the roller(s) and/or supporting bearings. Eccentric roller/bearing rotation produces motion
normal to the sheet at the ‘‘boundary’’ formed by the roller. This excitation mechanism can be
reduced by detuning the roller rotation frequency from any natural frequency of the sheet and/or
by reducing roller eccentricity by frequent servicing/changing of the roller’s bearings. The
bearings experience rapid wear as they are also submerged in the zinc bath. The second
mechanism is a parametric excitation that develops from the time varying tension experienced by
the sheet metal plate. For instance, consider the experimental measurements of dynamic tension
reported in Fig. 1(a). The magnitude of the time-varying tension is of the order of 10% of the
mean tension, and it is a likely source of parametric resonance. The crowned shape of the roller
also creates spatially varying tension in the width direction, and this is known to affect the linear
vibration characteristics of wide plates [1]. This study focuses on the parametric resonance of
plates by considering time-dependent, non-uniform tension, and non-linear mid-plane stretching.
Studies of plates, translating between two rollers, have considered many mechanical

phenomena including plate vibration and wrinkling. The rollers are most frequently assumed
to form either simply supported or clamped boundaries [1,2] while the two lateral edges are
considered free. In cases where the plate tension is uniform, the linear plate vibration
characteristics are well understood [3]. This understanding has also been extended to some cases
of non-uniform plate tension. For instance, Ulsoy and Mote [1] evaluate the vibration of wide
band saw blades subject to non-uniform edge tension applied at the roller/band interface. The
membrane stresses produced by non-uniform edge tension have been computed using finite
element [4] and Fourier series methods [2,5].
Time-dependent plate tension represents a source of parametric excitation and modelling this

effect requires consideration of the mechanics of mid-plane stretching. Moreover, the analysis of
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Fig. 1. Measured (a) tension and (b) vibration (displacement) data of plate in production sheet metal coating process

(v=159m/min, fr=3.52Hz).
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finite amplitude vibrations of parametrically excited plates requires consideration of the non-
linearities introduced by mid-plane stretching as captured in Von Karman plate theory [3,6]. Such
models have extensively been used to evaluate the non-linear response of rectangular plates with
all edges simply supported; see, for example, Refs. [7–11]. One-mode approximations for non-
linear and parametrically excited plates lead to a parametrically excited Duffing oscillator as
developed, for instance, in Refs. [11–13].
The objective of the present study is to extend our understanding of parametrically excited

plate vibration by considering the effects of non-uniform and time-dependent tension
for rectangular plates with two simply supported edges and two free edges. In addition,
this study contributes an understanding of how parametric plate vibrations develop in the
context of steel sheet metal processing. We begin by developing a model for this
application.

2. Plate model

2.1. Non-linear plate equation of motion

Consider a thin, flat, rectangular plate of length L and width B moving between two rollers that
form simple supports and that also provide tension as illustrated in Fig. 2, where #x; #y and #z are the
co-ordinates. The tension applied at these boundaries is non-uniform in the width direction, in
general. The two lateral sides of the plate are free. The thickness of the plate is h and the plate
translation speed is v: For the motivating application (sheet metal forming), the translation speed
is well below the critical speed vc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0=rBh

p
for a highly tensioned plate. Here, T0 is the

(spatially averaged) steady tension at the rollers, and r is the plate density. In particular,
v=vco0:04 for this application and the effects of the superimposed translation speed will therefore
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Fig. 2. Plate moving between two rollers with translation speed v subjected to tension.
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be ignored [1]. The non-linear equations of motion capturing mid-plane stretching are [3,6]
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where wðx; y; tÞ is the transverse plate deflection (in the z direction), D ¼ Eh3=½12ð1� n2Þ�; E is
Young’s modulus, v is the Poisson ratio, and r4 ¼ @4=@x4 þ 2@4=@x2@y2 þ @4=@y4 is the bi-
harmonic operator. Here the co-ordinates x; y and w are normalized with respect to the span
length L or x ¼ #x=L; y ¼ #y=L and w ¼ #w=L: Fðx; y; tÞ is an Airy stress function from which we
compute the normal stress in the x direction Tx; the shear stress Txy; and the normal stress in the y

direction Ty using

Tx ¼ @2F=@y2; Ty ¼ @2F=@x2; Txy ¼ �2@2F=@x@y: ð3Þ

2.2. Natural frequencies and mode shapes under non-uniform tension

Consider next the equations of motion linearized about a pre-stressed state that is planar and
created by applied, non-uniform tension at the two rollers. The Airy stress function for this
equilibrium state satisfies r4F ¼ 0 subject to the following boundary conditions that define the
conditions assumed at the rollers and free edges:

Txðx; yÞ ¼ TðyÞ at x ¼ 0; 1;

Tyðx; yÞ ¼ 0 at y ¼ 0; s;

Txyðx; yÞ ¼ 0 at x ¼ 0; 1 and y ¼ 0; s; ð4Þ

Here, s ¼ B=L is the plate aspect ratio, and TðyÞ is the prescribed non-uniform traction normal
to the edge of the plate at the roller supports. For the special cases of rectangular plates subject to
either uniform or linearly varying edge tension TðyÞ; the resulting stress components Tyðx; yÞ and
Txyðx; yÞ both vanish throughout the plate domain [2,14]. In all other cases, these stress
components do not vanish and no exact solutions exist for their determination, in general.
Approximate solutions can be determined using, for example, finite element [4] or Fourier series
[2,5] methods. In this study, a modification of the methods employed in Refs. [2,5] is used to
determine the stress distribution of a plate subject to a non-uniform edge tension that is
symmetrical with respect to the center of the roller. A symmetric edge tension naturally arises in
the motivating application due to the fact that the rollers are ‘‘crowned’’ (i.e., high in the middle).
This edge tension is prescribed by

TxðyÞ ¼K1 sin
p
s

y
� �

þ
X*p
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where the coefficients K1; Bp may be selected to describe a specific symmetric tension distribution
(boundary condition) and the functions D1pðsÞ and D2 pðsÞ are defined in Appendix A. The
functional form above leads to a simpler solution for the Airy stress function than that developed
in Refs. [2,5] yet it is still dominated by the first (sinusoidal) term.
The resulting Airy stress function can be shown to be

Fðx; yÞ ¼ K1 sin
p
s

y
� �

C11cosh
p
s

x �
1

2

� �� �
þ C21 x �

1

2

� �
sinh

p
s

x �
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� �� �� 

þ
X*p

p¼2;4

Bp cosðppxÞ D1pðsÞ cosh pp y �
s

2
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þ D2 pðsÞ y �
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� �
sinh pp y �

s

2

� �� �h i( )
; ð6Þ

where the coefficients C11; C21 are given in Appendix A. The associated stress components are
illustrated in Fig. 3 for an example plate. As shown in Fig. 3, at the edges x ¼ 0; 1; Txðx; yÞ satisfies
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Fig. 3. Stress distributions under parabolic type of non-uniform tension. (a) Txðx; yÞ; (b) Ty ðx; yÞ and (c) Txy ðx; yÞ: In
this example, s=1/4, h/L=8.7055	 10�5, K1=T0 and *p ¼ 10:
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Eq. (5) and resembles a symmetrical sine function. The boundary conditions Tyðx; yÞ ¼ 0 at y ¼
0; s and Txyðx; yÞ ¼ 0 at all edges are also satisfied. The overall spatial variations of these stress
components resemble the results of Lin and Mote [2], for which the tension distribution for a
sinusoidally varying edge tension was computed.
The linear transverse vibration characteristics of the plate, subject to the in-plane stresses

above, are now evaluated using a standard Ritz series. The comparison functions in this series are
selected to satisfy the assumed simply supported conditions at the rollers and the free conditions
at the two lateral edges. The m 	 n separable Ritz series

W ðx; yÞ ¼
Xm;n

j¼0;k¼1

ajkYjðyÞXkðxÞ; ð7Þ

for the eigenfunction W is formed in which ajk represent unknown coefficients and YjðyÞ and
XkðxÞ are known comparison functions for a uniform beam satisfying simple–simple and free–free
boundary conditions, respectively, as given in Appendix B [15].
The eigenvalue problem defining the plate natural frequencies and mode shapes is developed

from the linear form of Eq. (1)

%L½W � ¼ l %M½W �; ð8Þ

where l ¼ o2 is an eigenvalue (o is a natural frequency), and the linear operators %L and %M are
given by

%L ¼ �Tx @
2=@x2 � Ty@

2=@y 2 � Txy @
2=@x@y þ Dr4; ð9aÞ

%M ¼ r: ð9bÞ

The operator %L captures the dependence of the eigensolutions on the non-uniform edge tension
through the in-plane stress components Tx; Ty and Txy: Standard use of the Ritz method yields the
plate natural frequencies and mode shapes that are briefly described below.
Consider first the effects of non-uniform edge tension on the plate natural frequencies and

mode shapes. The non-uniform edge tension is illustrated in Fig. 4 and consists of a large mean
tension T0 ¼ 2:8 ton with a small super-imposed parabolic variation in the width direction of
magnitude T2: Fig. 5 illustrates the variation of the lower natural frequencies with increasing non-
uniformity ðT2=T0Þ for four plates having distinct aspect ratios. The modes are distinguished by
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Fig. 4. Definition of a prescribed parabolic tension variation in the width direction.
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the indices (m; n) that denote the order of modes in the y and x directions, respectively, as
defined in Appendix B. Note that as the plate aspect ratio (B/L) increases and the non-uniformity
increases, the natural frequencies of the higher order modes ðm ¼ 2; 3; 4Þ decrease more
rapidly than those of the two lower order modes ðm ¼ 0; 1Þ: Moreover, the mode shapes
for the higher order modes (m ¼ 2; n ¼ 1 and m ¼ 3; n ¼ 1) depend strongly upon the
non-uniformity ðT2=T0Þ: For example, the mode W21 can, in general, be well represented
by

W21 ¼ ðaY0 þ bY2ÞX1; ð10Þ

where the two parameters a and b are determined by the non-uniformity and the aspect ratio. The
dependence of a and b on T2=T0 is shown in Fig. 6 for the case of L ¼ 4B:

2.3. Discrete single-degree-of-freedom model for non-linear parametric vibration

The mode shapes discussed above are now used to develop a single-degree-of-freedom
approximation for non-linear plate response. We begin first with discretizing the Airy function for
the plate subject to non-uniform, time-varying tension and finite amplitude (non-linear) vibration.
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Fig. 5. Dependence of the natural frequencies of the lower vibration modes upon the non-uniformity of the tension.

Non-uniformity refers to T2=T0; reported as a percentage. (a) L ¼ 2B; (b) L ¼ 4B; (c) L ¼ 8B; and (d) L ¼ 16B:
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The Airy stress function can be decomposed into

Ftotalðx; y; tÞ ¼ Fðx; yÞ þ Fnonðx; y; tÞ þ 1
2

rðtÞðy � s=2Þ2: ð11Þ

Here, F ðx; yÞ is the equilibrium (static) component as given by Eq. (6) and this captures
the effects of the steady but non-uniform edge tension. The component Fnon ðx; y; tÞ captures the
additional mid-plane stresses developed by (non-linear) transverse vibration. Finally, the
component 1

2
rðtÞðy � s=2Þ2 captures an assumed time variation of the mid-plane stresses

due to a time-varying mean edge tension that is superimposed on the non-uniform edge
tension. For instance, if the (spatial) mean edge tension varies as TðtÞ ¼ T0 þ DTðtÞ; then
rðtÞ ¼ DTðtÞ: In this study, the time-dependent tension DTðtÞ will either be assumed to be
harmonic or assumed known from experimental measurement. Attention now focuses on
developing an expression for Fnonðx; y; tÞ from a single mode approximation of the vibration
response.
Consider a single-degree-of-freedom approximation to the non-linear system (1) and (2) using a

single mode of vibration as developed in Section 2.2 Thus, let

wðx; y; tÞEW21 f ðtÞ ¼ ðaY0 þ bY2ÞX1 f ðtÞ; ð12Þ

in which f ðtÞ is an unknown modal co-ordinate associated with the known vibration mode
W21ðx; yÞ: This vibration mode is further described by the two parameters a and b introduced in
Section 2.2 The associated Airy function must satisfy

r4Fnon ¼ Eh½ð@2w=@x@yÞ2 � ð@2w=@x2Þð@2w=@y2Þ�: ð13Þ

Eq. (13) captures the non-linear stretching of the mid-plane of the plate provided the edges at
the rollers are immovable. This later condition requires

u jx¼0;1 ¼ 0 ð14aÞ

with the remaining boundary conditions:

Ny ¼ @2Fnon=@x2 ¼ 0 at y ¼ 0; s; ð14bÞ

Nxy ¼ �2 @2Fnon=@x@y ¼ 0 at all edges: ð14cÞ
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Fig. 6. Dependence of coefficients a and b upon the non-uniformity of the tension ðL ¼ 4BÞ:

C.H. Kim et al. / Journal of Sound and Vibration 268 (2003) 679–697686



At x ¼ 1; Eq. (14a) can be re-written [6–11,13] as

u jx¼1 ¼
Z 1

0

ðex � 1
2
ð@w=@xÞ2Þ dx ¼

Z 1

0

½ðNx � nNyÞ=Eh � 1
2
ð@w=@xÞ2� dx: ð15Þ

Substituting Eq. (12) into Eq. (13) gives

r4Fnon=Eh ¼ f 2ðtÞ½a2ðX 0
1Y

0
0X

0
1Y

0
0 � X 00

1 Y0X1Y
00
0 Þ þ b2ðX 0

1Y
0
2X

0
1Y

0
2 � X 00

1 Y2X1Y
00
2 Þ

þ abð2X 0
1Y

0
0X

0
1Y

0
2 � X 00

1 Y0X1Y
00
2 � X 00

1 Y2X1Y
00
0 Þ�; ð16Þ

where X 0
1 ¼ @X1=@x; X 00

1 ¼ @2X1=@x2 and Y 0
m ¼ @Ym=@y; Y 00

m ¼ @2Ym=@y2 for m ¼ 0; 2: Fnon can
now be decomposed as

Fnon ¼ f 2ðtÞ½a2Faaðx; yÞ þ abFabðx; yÞ þ b2Fbbðx; yÞ�; ð17Þ

where the spatial functions Faa; Fab and Fbb are evaluated using the procedure in Appendix C.
From the total Airy function given by Eq. (11), the associated stress distributions are

Ttotal
x ¼ @2Ftotal=@y2 ¼ Tx þ N�

x f 2ðtÞ þ rðtÞ;

Ttotal
y ¼ @2Ftotal=@x2 ¼ Ty þ N�

y f 2ðtÞ;

Ttotal
xy ¼ �2@2Ftotal=@x@y ¼ Txy þ N�

xy f 2ðtÞ; ð18Þ

where N�
x ¼ Nx= f 2ðtÞ; N�

y ¼ Ny= f 2ðtÞ; and N�
xy ¼ Nxy= f 2ðtÞ:

Standard use of Galerkin’s method using Eq. (12) in Eqs. (1) and (2) leads to the single non-
linear equation governing the modal co-ordinate f ðtÞ:

.f ðtÞ þ 2Bo0
’fðtÞ þ ½aþ ger ðtÞ� f ðtÞ þ be f 3ðtÞ ¼ 0; ð19Þ

where a; be; ge are given in Appendix D and o0 is the natural frequency of the mode considered.
Note that a ¼ o2

0 and that modal damping B has been added.

3. Analysis of parametric resonance

Assume that the time-varying tension is described by the single harmonic

rðtÞ ¼ cosot: ð20Þ

Analysis of the linearized form of (19) will provide the stability boundaries that separate stable
from unstable trivial solutions. Subsequent analysis of the non-linear form will be used to assess
the limit cycles that bifurcate from the trivial solution.

3.1. Linear system

Substitution of Eq. (20) into Eq. (19) and elimination of the non-linear term yields

.f þ 2Bo0
’f þ ðo2

0 þ ge cosotÞ f ¼ 0; ð21Þ
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in which e is small, non-dimensional small parameter defined by e ¼ h=L: Letting 2Bo0 ¼ 2Ce;
ge ¼ 2eg in Eq. (21) produces

.f þ 2Ce ’f þ ðo2
0 þ 2eg cosotÞ f ¼ 0: ð22Þ

The solution of Eq. (22) can be represented by the first order multiple-scales expansion [13]

f ¼ f0 ðt0; t1Þ þ ef1ðt0; t1Þ; ð23Þ

where tn ¼ ent for n ¼ 0; 1: This expansion is used to evaluate the (principal) parametric resonance
centered about o ¼ 2o0: Letting o ¼ 2o0 þ es; where s is a detuning parameter, and using a
standard multiple scales analysis [13] leads to the instability boundaries

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=o2

0 � 4C2

q
oso

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=o2

0 � 4C2

q
: ð24Þ

The trivial solution is unstable for values of the detuning parameter between these bounds. As
expected, non-trivial periodic solutions bifurcate from the trivial solution at the stability
boundaries as seen in the following analysis of the non-linear system.

3.2. Non-linear system

The non-linear parametrically excited plate is governed by

.f þ 2Ce ’f þ ðo2
0 þ 2eg cosotÞf þ ebf 3 ¼ 0; ð25Þ

where b ¼ be = e: The zeroth order solution is written as

f0 ¼ Aðt1Þeio0t0 þ %Aðt1Þe�io0t0 ; ð26Þ

and it captures modulations on the t1 time scale. Introduce the polar form

Aðt1Þ ¼ 1
2
aAðt1Þeifðt1Þ; ð27Þ

where aAðt1Þ and fðt1Þ denote a slowly varying amplitude and phase, respectively. Steady
solutions for aA and f provide the amplitude and phase of a periodic solution to Eq. (25). The
steady amplitude obeys [13]

fC2 þ ð1
2
saA � 3

8
ba2A=o0Þ

2ga2
A ¼ 1

4
g2a2A=o

2
0: ð28Þ

Thus, the trivial solution ða2
A ¼ 0Þ is always a solution, and the non-trivial solutions are given

by

ð3
8
b=o0Þa2A ¼ 1

2
s7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
g2=o2

0 � C2

q
; ð29Þ

provided

ð3
8
b=o0Þa2A ¼ 1

2
s7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
g2=o2

0 � C2

q
> 0: ð30Þ

The stability of these non-trivial solutions may also be assessed by evaluating the eigenvalues of
the amplitude and phase modulation equations after linearization about a known periodic
solution. The stability depends upon the excitation amplitude parameter g and the detuning
parameter s: Three distinct types of behaviors are found as illustrated in Fig. 7 [13]. In region I,
only the trivial solution exists and it is stable. Thus, the response from any initial condition decays

ARTICLE IN PRESS

C.H. Kim et al. / Journal of Sound and Vibration 268 (2003) 679–697688



to zero as also predicted by the linear system. In region II, a stable non-trivial solution as well as
the unstable trivial solution co-exist so that all initial conditions produce a limit cycle. In region
III, the trivial solution regains stability and the two non-trivial solutions co-exist; one stable
(larger amplitude) and the other unstable (smaller amplitude). As a result, solutions always
decay to zero or converge to the stable solution whose amplitude is computed from

ð3
8
b=o0Þa2A ¼ 1

2
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
g2=o2

0 � C2

q
: Thus, in this region, two stable periodic solutions co-exist

and the initial conditions ultimately determine which of these two periodic motions represent the
long-term response.

4. Parametric resonance in sheet metal coating process

An example sheet metal coating process is studied that reveals the importance of parametric
resonance in producing vibrations of the sheet metal. These vibrations in turn may lead to
variations in coating thickness that can degrade the quality of the finished product.
A schematic of this process is shown in Fig. 2 where the plate of steel sheet metal is covered with

molten zinc that solidifies as the plate translates between the two rollers shown. The plate has
dimensions L ¼ 22:5m (length), B ¼ 1:209m (width), and h ¼ 0:421mm (thickness), and it
translates with speeds ranging from v ¼ 140 to 180m/min.
Fig. 1(b) illustrates the measured displacement of the plate sampled using a proximity sensor

that is located at 1m from the roller that is submerged in the zinc bath and also at the centerline of
the plate (sensor location: x ¼ 1=22:5; y ¼ 1:209=45). The time record shown is for a period of
96 s. The data were then analyzed by computing the harmonic wavelet [16]. The resulting time-
frequency map is illustrated in Fig. 8. Apparent at all times is a pronounced peak at fr ¼ 3:52Hz
that corresponds to the rotation frequency of the two rollers. Thus, it is clear that the rollers are
responsible for the majority of the plate vibration and this derives from roller and/or bearing run-
out. Moreover, a secondary peak at twice the roller frequency is often present. Also observable is
a peak at the fundamental natural frequency of the plate fn ¼ 3:69Hz in Case B (from 16 to 32 s),
Case D (from 43 to 53 s) and Case F (from 83 to 96 s) that show large peaks and Case C (32 to
43 s), Case E (53 to 83 s) that show small peaks. This sustained response at the natural frequency is
expected when the plate is parametrically excited as discussed next.
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Fig. 7. Three regions that determine qualitatively distinct behaviors of periodic response [13].
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The likely source of parametric excitation is the time-dependent tension that develops in this
process due to multiple mechanisms including unsteady process speed, unsteady roller dynamics,
roller/bearing run-out, and the like. The fundamental vibration mode may experience parametric
resonance when these tension fluctuations are reasonably significant and also occur at frequencies
near to twice the fundamental natural frequency. To investigate this, data for dynamic tension
were collected using a roller instrumented with load cells to measure bearing reactions, hence
dynamic tension. Fig. 9 shows the harmonic wavelet map of the dynamic tension data given in
Fig. 1(a). The frequency range of 2 fn70:15 ¼ 7:3870:15 Hz is identified by two dashed lines.
Note that, although the dynamic tension data have a wide range of frequency components, their
contributions, except the identified frequency range, to the response are insignificant as shown in
Fig. 8. The greatest amount of dynamic tension in this range occurs for Cases B, D and F. In
each of these cases, there is a significant corresponding peak at fn in Fig. 8. In addition, Cases A
(0–16), C and E in Fig. 9 have dynamic tension peaks in this range but narrower and smaller than
Cases B, D and F, thus there are very small peaks at fn in Cases C and E and no peak in Case A of
Fig. 8.
The model and analysis of Section 3 may be used to estimate the magnitude of the plate

vibration due to parametric resonance for the experimental conditions described above. To this
end, we shall focus on Case A (no observable parametric resonance) and B (clearly observable
parametric resonance) beginning with an estimate of the magnitude of the dynamic tension for
both cases. This estimate may be obtained from the power spectra in Figs. 10(a) and (b) which are
the power spectra of the tension data of Cases A and B, respectively, and which lead to
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Fig. 8. Time–frequency map of vibration data in Fig. 1(b).
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DT=T0 ¼ 0:53% for Case A and DT=T0 ¼ 0:89% for Case B. The coefficients b and g in Eq. (25)
are 3:42	 109 and 1:51	 105 for Case A, and g ¼ 2:54	 105 for Case B. The damping ratio B is
an unknown but important factor in determining whether the parametric resonance exists. This is
clearly seen in Fig. 11 that shows how the stability boundary depends upon the damping ratio in
the range from 0:002 to 0:005: Consider the case of B ¼ 0:003 and zero detuning s ¼ 0: For Case
A, g ¼ 1:51	 105 which places this case within the stable region for the trivial solution and no
parametric resonance is expected. By contrast, for Case B, g ¼ 2:54	 105; and this falls well
within the unstable region for the trivial solution and a stable (non-trivial) periodic solution exists.
Should the damping ratio actually be as large as B ¼ 0:005; then Case B lies in the stable region for
the trivial solution and no parametric resonance would be observed. Likewise, should the
damping decrease to B ¼ 0:002; then Case A lies in the unstable region and parametric resonance
would then be observable. Thus the damping ratio has an expected and pronounced effect on the
parametric resonance.
For the purpose of illustration, consider again the case B ¼ 0:003 and the response of the plate

due to both parametric and external excitation as predicted by the non-linear single-degree-of-
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Fig. 9. Time–frequency map of tension data of Fig. 1(a).
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freedom model

.f þ 2Bo0
’f þ RðtÞ f þ be f 3ðtÞ ¼ .qeðtÞ: ð31Þ

Here, RðtÞ ¼
R

D� ð�TðtÞ@2W=@x2 þ DWr4W Þ dD�=
R

D� rW 2 dD�; D� is the integration domain,
TðtÞ is the recorded tension data from the sheet metal coating experiment as given in Fig. 1(a), and
qeðtÞ ¼ Qe cos ðortÞ represents an assumed harmonic moving boundary excitation due to roller
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Fig. 10. Power spectra obtained from the measured tension for (a) Case A, and (b) Case B.

Fig. 11. Dependence of stability boundary on the damping.
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eccentricity of amplitude Qe and frequency or ¼ 2pfr: The amplitude Qe is unknown but can be
estimated from the measured plate response data. Direct numerical integration of Eq. (31) for
Cases A and B leads to the computed response power spectra shown in Figs. 12(a) and (b),
respectively.
To arrive at these results, we adjusted one parameter, namely the (unknown) magnitude

of the eccentricity Qe: In particular, Qe was tuned to minimize the error between the
measured (Fig. 13) and the predicted (Fig. 12) response power spectra. These results
demonstrate that the response for Case A is dominated by the roller eccentricity while the
response for Case B is nearly equally partitioned between the roller eccentricity and parametric
resonance. Moreover, the overall agreement between the measured and predicted power spectra is
very good.

5. Summary and conclusions

A non-linear model is proposed for describing the parametric resonance of a plate subject to
non-uniform and time-varying edge tension. A one mode approximation of the response is used to
develop a non-linear single-degree-of-freedom model that is analyzed using a perturbation
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Fig. 12. Power spectra obtained from model for (a) Case A, and (b) Case B.
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method. This analysis reveals the conditions under which the plate is likely to experience principal
parametric resonance of its fundamental mode due to time-varying tension. This theory is then
used to explain experimental results for sheet metal vibration in a production sheet metal coating
process.
Analysis of the experimental data reveals that sheet metal vibration originates from two

major mechanisms: (1) external excitation due to roller/bearing run-out, and (2) parametric
excitation due to time-varying tension. Measurements of the time-varying tension confirm the
existence of frequency components at twice the fundamental natural frequency of the plate.
Measurements of plate vibration confirm predictions from the theoretical model that the
measured time-varying tension is sufficient to generate plate parametric resonance. In this case,
the model also reveals that the parametric resonance is strongly influenced by the plate damping.
Finally, increasing plate damping may provide a means to eliminate the parametric resonance in
this application.
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Fig. 13. Power spectra obtained from the measured response for (a) Case A, and (b) Case B.
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Appendix A

C11 ¼ �
2s2½sinhðp=2sÞ þ ðp=2sÞ coshðp=2sÞ�

p2½p=s þ sinhðp=sÞ�
; C21 ¼

2s sinhðp=2sÞ
p½p=s þ sinhðp=sÞ�

D1p ¼
s sinhðpps=2Þ

pp½pps þ sinhðppsÞ�
; D2p ¼ �

s coshðpps=2Þ
pp½pps þ sinhðppsÞ�

:

Appendix B

XkðxÞ ¼ sin kpx; k ¼ 1; 2;y; ðB:1Þ

Y0ðyÞ ¼ A0; ðB:2Þ

Y1ðyÞ ¼ A1ðy � s=2Þ; ðB:3Þ

YjðyÞ ¼ Aj½sinðbjy=sÞ þ sinhðbjy=sÞ� þ Bj½cosðbjy=sÞ þ coshðbjy=sÞ�; j ¼ 2; 3; 4;y; ðB:4Þ

where Aj ¼ cos bj � cosh bj; Bj ¼ �ðsin bj � sinh bjÞ and cos bj cosh bj ¼ 1: Note that Eqs. (B.2)
and (B.3) describe the two rigid-body modes of a free–free beam.

Appendix C

Using Nx ¼ @2Fnon=@y2; Ny ¼ @2Fnon=@x2 and substituting Eqs. (12) and (17) into Eq. (15)
leads to

1

Eh
ðNx � vNyÞ �

1

2

@w

@x

� �2

¼ f 2ðtÞ a2 @ 2Faa

Eh@y2
� n

@ 2Faa

Eh@x2
� X 02

1 Y 2
0

� ��

þ b2 @ 2Fbb

Eh@y 2
� n

@2Fbb

Eh@x 2
� X 02

1 Y 2
2

� �

þab
@ 2Fab

Eh@y 2
� n

@2Fab

Eh@x 2
� X 02

1 Y0Y2

� �
: ðC:1Þ

Next, we separate terms having constant coefficients and terms proportional to a2; b2 and ab:
Consider a particular solution F

p
bb that satisfies

r4F
p
bb=Eh ¼ f 2ðtÞ½b2ðX 0

1Y
0
2X

0
1Y

0
2 � X 00

1 Y2X1Y
00
2 Þ�: ðC:2Þ

F
p

bb can be written as

F
p
bb ¼ ðcos 2pxÞgbbðyÞ þ hbbðyÞ; ðC:3Þ

where gbbðyÞ and hbbðyÞ are functions of y: However, the stress distributions from Eq. (C.3) do not
satisfy conditions (2.14b) and (2.14c), but do satisfy N

p
bbxyjx¼0;1 ¼ 0 as required. Consider an Airy
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function Fh
bb given by

Fh
bb ¼ ½Ch1

bb coshf2pðy � s=2Þg þ Ch2
bbðy � s=2Þ sinhf2pðy � s=2Þg� cos 2px

þ ½Dh1
bb coshf2pðy � s=2Þg þ Dh2

bbðy � s=2Þ sinhf2pðy � s=2Þg� cos 2px; ðC:4Þ

that satisfies the homogeneous equation r4Fh
bb ¼ 0: The first term, denoted Fh1

bb ; when added to a
term of the particular solution Fbb ¼ F

p
bb þ Fh

bb satisfies @2Fbb=@x2jy¼0;s ¼ 0 by selection of the
coefficients Ch1

bb ; Ch2
bb and this guarantees @2Fh1

bb=@x@yjx¼0;1&y¼0;s ¼ 0: The second term, denoted Fh2
bb ;

when added to a term of the particular solution Fbb ¼ F
p
bb þ F h

bb satisfies @2Fbb=@x@yjy¼0;s ¼ 0 by
selection of the coefficients Dh1

bb; Dh2
bb and this guarantees @2Fh2

bb=@
2xjy¼0;s ¼ 0: Thus Fbb that satisfies

the boundary conditions for the stresses is

Fbb ¼ F
p
bb þ Fh

bb: ðC:5Þ

It can easily be shown thatZ 1

0

@2Fbb

Eh@y2
� n

@2Fbb

Eh@x2
� X

02
1 Y 2

2

� �
dx ¼ 0: ðC:6Þ

By similar procedure, Fab satisfying r4Fab=Eh ¼ f 2ðtÞabð�X 00
1 Y0X1Y

00
2 Þ can also be found.

Let

Fab ¼ F
p
ab þ F h

ab; ðC:7Þ

where F
p

ab is given by Eq. (C.8) and F h
ab is the homogeneous solution that allows Fab to satisfy the

boundary conditions. The particular solution is

F
p
ab ¼ ðcos 2pxÞgabðyÞ þ habðyÞ; ðC:8Þ

where gabðyÞ and habðyÞ are also functions of y: In this case,Z 1

0

@2Fab

Eh@y2
� n

@2Fab

Eh@x2
� X

02
1 Y0Y2

� �
dx ¼ 0: ðC:9Þ

Finally, Faa which satisfies r4Faa=Eh ¼ 0 is

Faa ¼
Eh

8
Y 2

0p
2 f 2ðtÞðy � s=2Þ2; ðC:10Þ

from which Z 1

0

@2Faa

Eh@y2
� n

@2Faa

Eh@x2
� X 02

1 Y 2
0

� �
dx ¼ 0: ðC:11Þ

This method described above can be applied to all vibration modes that consisted of Y0X1 and
Y2X1 including W01 ¼ Y0X1 and W21 ¼ Y2X1:

Appendix D

Let

AW ¼
Z s

0

Z 1

0

�TxW
@2W

@x2
� TyW

@2W

@y2
þ TxyW

@2W

@x@y
þ DWr4W

� �
dx dy; ðD:1Þ
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BW ¼
Z s

0

Z 1

0

�N�
xW

@2W

@x2
� N�

y W
@2W

@y2
þ N�

xyW
@2W

@x@y

� �
dx dy; ðD:2Þ

CW ¼
Z s

0

Z 1

0

�DTW
@2W

@x2

� �
dx dy; ðD:3Þ

G ¼
Z s

0

Z 1

0

W %M½W � dx dy ¼ r
Z s

0

Z 1

0

W 2 dx dy: ðD:4Þ

Then the coefficients

ae ¼
AW

G
¼ o2

0; ðD:5Þ

be ¼
BW

G
; ðD:6Þ

ge ¼
CW

G
: ðD:7Þ
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